Structural and functional MRI reveals multiple retinal layers.
نویسندگان
چکیده
MRI is a noninvasive diagnostic modality that reveals anatomy, physiology, and function in vivo without depth limitation or optical interference. MRI application to the retina, however, remains challenging. We improved spatial resolution to resolve layer-specific structure and functional responses in the retina and confirmed the laminar resolution in an established animal model of retinal degeneration. Structural MRI of normal rat retinas revealed three bands corresponding histologically to (i) the combined ganglion cell layer/inner nuclear layer plus the embedded retinal vessels, (ii) the avascular outer nuclear (photoreceptor) layer and its photoreceptor segments, and (iii) the choroidal vascular layer. Imaging with an intravascular contrast agent (gadolinium-diethylene-tri-amine-pentaacetic acid) enhanced the retinal and choroidal vascular layers bounding the retina, but not the avascular outer nuclear layer and the vitreous. Similarly, blood-oxygen-level-dependent (BOLD) functional MRI revealed layer-specific responses to hyperoxia and hypercapnia. Importantly, layer-specific BOLD responses in the two vascular layers were divergent, suggesting the two vasculatures are differentially regulated. To corroborate sensitivity and specificity, we applied layer-specific MRI to document photoreceptor degeneration in Royal College of Surgeons rats. Consistent with histology, layer-specific MRI detected degeneration of the outer nuclear layer. Surprisingly, MRI revealed increased thickness in the choroidal vascular layer and diminished BOLD responses to hyperoxia and hypercapnia in the Royal College of Surgeons rat retinas, suggesting perturbation of vascular reactivity secondary to photoreceptor loss. We conclude that MRI is a powerful investigative tool capable of resolving lamina-specific structures and functional responses in the retina as well as probing lamina-specific changes in retinal diseases.
منابع مشابه
Layer-specific anatomical, physiological and functional MRI of the retina.
Most retinal imaging has been performed using optical techniques. This paper reviews alternative retinal imaging methods based on MRI performed with spatial resolution sufficient to resolve multiple well-defined retinal layers. The development of these MRI technologies to study retinal anatomy, physiology (blood flow, blood volume, and oxygenation) and function, and their applications to the st...
متن کاملLayer-specific functional and anatomical MRI of the retina with passband balanced SSFP.
The retina consists of multiple cellular and synaptic layers and is nourished by two distinct (retinal and choroidal) circulations bounding the retina, separated by an avascular layer. High spatiotemporal resolution, layer-specific MRI of the retina remains challenging due to magnetic inhomogeneity-induced artifacts. This study reports passband balanced steady-state free-precession (bSSFP) MRI ...
متن کاملManganese-enhanced MRI reveals multiple cellular and vascular layers in normal and degenerated retinas.
PURPOSE To use manganese-enhanced magnetic resonance imaging (MEMRI) at 25 × 25 × 800 μm(3) to image different retinal and vascular layers in the rat retinas. MATERIALS AND METHODS Manganese-chloride was injected intraocularly in normal (n = 5) and Royal College of Surgeons (RCS, an model of photoreceptor degeneration) (n = 5) rats at postnatal day 90. MEMRI at 4.7 T was performed 24 hours la...
متن کاملStudy of Photoisomerization in Cis-Retinal as a Natural Photo Switch in Vision Using Density Functional Theory
In the present study, theoretical chemical reactivates Photo isomerization in Cis-Retinal as a Natural Photo switch in Vision. DFT hybrid functional, B3LYP and, post-HF method, were the theoretical methods applied utilizing G09 software. 6-31G+ (d,p) basis set employed for structural optimizations, and single point computations performed using B3LYP/6-31G+(d,p). The isomers cis molecule retinal...
متن کاملStudy of Photoisomerization in Cis-Retinal as a Natural Photo Switch in Vision Using Density Functional Theory
In the present study, theoretical chemical reactivates Photo isomerization in Cis-Retinal as a Natural Photo switch in Vision. DFT hybrid functional, B3LYP and, post-HF method, were the theoretical methods applied utilizing G09 software. 6-31G+ (d,p) basis set employed for structural optimizations, and single point computations performed using B3LYP/6-31G+(d,p). The isomers cis molecule retinal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 46 شماره
صفحات -
تاریخ انتشار 2006